Publications
A list of my publications appears below. An up-to-date version of this list, with some additional items and citation information, can be found on the NASA ADS system, and another slightly different list is available from the arXiv.
Papers
[46] Dark Energy Survey Year 3 results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, DES Collaboration: T. M. C. Abbott, M. Aguena, A. Allarcon, et al., ArXiv: 2105.13549
[45] Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction, N. Jeffrey, M. Gatti, C. Chang et al., MNRAS, 505, 4626 (2021), ArXiv: 2105.13539
[44] Cosmology beyond BAO from the 3D distribution of the Lyman-$\alpha$ forest, Andrei Cuceu, Andreu Font-Ribera, Benjamin Joachimi, Seshadri Nadathur, ArXiv: 2103.14075
[43] Environmental dependence of X-ray and optical properties of galaxy clusters, M. Manolopoulou, B. Hoyle, R. G. Mann, M. Sahlén, S. Nadathur, MNRAS, 500, 1953 (2021), ArXiv: 2010.12671
[42] DES Y1 results: Splitting growth and geometry to test $\Lambda$CDM, J. Muir, E. Baxter, V. Miranda, et al., Phys. Rev. D, 103, 023528 (2021), ArXiv: 2010.05924
[41] The completed SDSS-IV extended baryon oscillation spectroscopic survey: geometry and growth from the anisotropic void-galaxy correlation function in the luminous red galaxy sample, Seshadri Nadathur, Alex Woodfinden, Will J. Percival et al., MNRAS, 499, 4140 (2020), ArXiv: 2008.06060
[40] The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from cosmic voids, Marie Aubert, Marie-Claude Cousinou, Stéphanie Escoffier, et al., ArXiv: 2007.09013
[39] The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1, Arnaud de Mattia, Vanina Ruhlmann-Kleider, Anand Raichoor, et al., MNRAS, 501, 5616 (2021), ArXiv: 2007.09008
[38] The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale Structure Catalogues and Measurement of the isotropic BAO between redshift 0.6 and 1.1 for the Emission Line Galaxy Sample, Anand Raichoor, Arnaud de Mattia, Ashley J. Ross, et al., MNRAS, in press (2020), ArXiv: 2007.09007
[37] The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0, Héctor Gil-Marín, Julián E. Bautista, Romain Paviot, et al., MNRAS, 498, 2492 (2020), ArXiv: 2007.08994
[36] The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1, Julian E. Bautista, Romain Paviot, Mariana Vargas Magaña, et al., MNRAS, in press (2020), ArXiv: 2007.08993
[35] The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory, eBOSS Collaboration (S. Alam et al.), Phys. Rev. D, 103, 083533 (2021), ArXiv: 2007.08991
[34] Reconstructing the radial velocity profile of cosmic voids with kinematic Sunyaev-Zeldovich Effect, Yi-Chao Li, Yin-Zhe Ma, Seshadri Nadathur, ArXiv: 2002.01689
[33] Testing Low-Redshift Cosmic Acceleration with Large-Scale Structure, Seshadri Nadathur, Will J. Percival, Florian Beutler, Hans A. Winther, Phys. Rev. Lett., 124, 221301 (2020), ArXiv: 2001.11044
[32] The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra, Romina Ahumada, Carlos Allende Prieto, Andrés Almeida, et al., ApJS, 249, 3 (2020), ArXiv: 1912.02905
[31] The Gravitational Lensing Signatures of BOSS Voids in the Cosmic Microwave Background, Srinivasan Raghunathan, Seshadri Nadathur, Blake D. Sherwin, Nathan Whitehorn, ApJ, 890, 168 (2020), ArXiv: 1911.08475
[30] Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background, P. Vielzeuf, A. Kovács, U. Demirbozan, et al., MNRAS, in press (2020), ArXiv: 1911.02951
[29] Constraints on the growth of structure around cosmic voids in eBOSS DR14, Adam J. Hawken, Marie Aubert, Alice Pisani, Marie-Claude Cousinou, Stéphanie Escoffier, Seshadri Nadathur, Graziano Rossi, Donald P. Schneider, JCAP, 6, 012 (2020), ArXiv: 1909.04394
[28] Constraints on decaying dark matter from weak lensing and cluster counts, Kari Enqvist, Seshadri Nadathur, Toyokazu Sekiguchi, Tomo Takahashi, JCAP, 4, 015 (2020), ArXiv: 1906.09112
[27] Beyond BAO: Improving cosmological constraints from BOSS data with measurement of the void-galaxy cross-correlation, Seshadri Nadathur, Paul M. Carter, Will J. Percival, Hans A. Winther, Julian E. Bautista, Phys. Rev. D, 100, 023504 (2019), ArXiv: 1904.01030
[26] More out of less: an excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey, A. Kovács, C. Sánchez, J. García-Bellido, et al., MNRAS, 484, 5267 (2019), ArXiv: 1811.07812
[25] A Zeldovich reconstruction method for measuring redshift space distortions using cosmic voids, Seshadri Nadathur, Paul Carter, Will J. Percival, MNRAS, 482, 2459 (2019), ArXiv: 1805.09349
[24] An accurate linear model for redshift space distortions in the void-galaxy correlation function, Seshadri Nadathur, Will J. Percival, MNRAS, 483, 3472 (2019), ArXiv: 1712.07575
[23] Tracing the gravitational potential using cosmic voids, Seshadri Nadathur, Shaun Hotchkiss, Robert Crittenden, MNRAS, 467, 4067 (2017), ArXiv: 1610.08382
[22] Imprint of DES superstructures on the cosmic microwave background, A. Kovács, C. Sánchez, J. García-Bellido, et al., MNRAS, 465, 4166 (2017), ArXiv: 1610.00637
[21] A Detection of the Integrated Sachs-Wolfe Imprint of Cosmic Superstructures Using a Matched-filter Approach, Seshadri Nadathur, Robert Crittenden, ApJL, 830, L19 (2016), ArXiv: 1608.08638
[20] Cosmic voids and void lensing in the Dark Energy Survey Science Verification data, C. Sánchez, J. Clampitt, A. Kovacs, et al., MNRAS, 465, 746 (2017), ArXiv: 1605.03982
[19] Testing cosmology with a catalogue of voids in the BOSS galaxy surveys, Seshadri Nadathur, MNRAS, 461, 358 (2016), ArXiv: 1602.04752
[18] Beyond $\Lambda$CDM: Problems, solutions, and the road ahead, Philip Bull, Yashar Akrami, Julian Adamek, et al., Phys. Dark U., 12, 56 (2016), ArXiv: 1512.05356
[17] The nature of voids - II. Tracing underdensities with biased galaxies, S. Nadathur, S. Hotckiss, MNRAS, 454, 889 (2015), ArXiv: 1507.00197
[16] Decaying dark matter and the tension in $\sigma_8$, Kari Enqvist, Seshadri Nadathur, Toyokazu Sekiguchi, Tomo Takahashi, JCAP, 2015, 067 (2015), ArXiv: 1505.05511
[15] The nature of voids - I. Watershed void finders and their connection with theoretical models, S. Nadathur, S. Hotckiss, MNRAS, 454, 2228 (2015), ArXiv: 1504.06510
[14] Can a supervoid explain the cold spot?, Seshadri Nadathur, Mikko Lavinto, Shaun Hotchkiss, Syksy Räsänen, Phys. Rev. D, 90, 103510 (2014), ArXiv: 1408.4720
[13] Self-similarity and universality of void density profiles in simulation and SDSS data, S. Nadathur, S. Hotchkiss, J. M. Diego, I. T. Iliev, S. Gottlöber, W. A. Watson, G. Yepes, MNRAS, 449, 3997 (2015), ArXiv: 1407.1295
[12] The Jubilee ISW Project - II. Observed and simulated imprints of voids and superclusters on the cosmic microwave background, S. Hotchkiss, S. Nadathur, S. Gottlöber, I. T. Iliev, A. Knebe, W. A. Watson, G. Yepes, MNRAS, 446, 1321 (2015), ArXiv: 1405.3552
[11] Comments on arXiv:1310.5067: ''A response to 'A self-consistent public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys' '', Seshadri Nadathur, Shaun Hotchkiss, ArXiv: 1310.6911
[10] A robust public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys, Seshadri Nadathur, Shaun Hotchkiss, MNRAS, 440, 1248 (2014), ArXiv: 1310.2791
[9] The Jubilee ISW project - I. Simulated ISW and weak lensing maps and initial power spectra results, W. A. Watson, J. M. Diego, S. Gottlöber, et al., MNRAS, 438, 412 (2014), ArXiv: 1307.1712
[8] Seeing patterns in noise: gigaparsec-scale `structures' that do not violate homogeneity, Seshadri Nadathur, MNRAS, 434, 398 (2013), ArXiv: 1306.1700
[7] The stacked ISW signal of rare superstructures in $\Lambda$CDM, Samuel Flender, Shaun Hotchkiss, Seshadri Nadathur, JCAP, 2013, 013 (2013), ArXiv: 1212.0776
[6] Observable gravitational waves from inflation with small field excursions, Shaun Hotchkiss, Anupam Mazumdar, Seshadri Nadathur, JCAP, 2012, 008 (2012), ArXiv: 1110.05389
[5] The integrated Sachs-Wolfe imprint of cosmic superstructures: a problem for $\Lambda$CDM, Seshadri Nadathur, Shaun Hotchkiss, Subir Sarkar, JCAP, 2012, 042 (2012), ArXiv: 1109.4126
[4] Curvaton Scenario within the Minimal Supersymmetric Standard Model and Predictions for Non-Gaussianity, Anupam Mazumdar, Seshadri Nadathur, Phys. Rev. Lett., 108, 111302 (2012), ArXiv: 1107.4078
[3] Inflation with large supergravity corrections, Anupam Mazumdar, Seshadri Nadathur, Philip Stephens, Phys. Rev. D, 85, 045001 (2012), ArXiv: 1105.0430
[2] Inflection point inflation: WMAP constraints and a solution to the fine tuning problem, Shaun Hotchkiss, Anupam Mazumdar, Seshadri Nadathur, JCAP, 2011, 002 (2011), ArXiv: 1101.6046
[1] Reconciling the local void with the CMB, Seshadri Nadathur, Subir Sarkar, Phys. Rev. D, 83, 063506 (2011), ArXiv: 1012.3460
Conference proceedings
[2] The ISW imprints of voids and superclusters on the CMB, S. Hotchkiss, S. Nadathur, S. Gottlöber, I. T. Iliev, A. Knebe, W. A. Watson, G. Yepes, In The Zeldovich Universe: Genesis and Growth of the Cosmic Web, Proceedings of the International Astronomical Union, IAU Symposium, Volume 308, pp. 580-584 (2016), DOI
[1] Universal void density profiles from simulation and SDSS, S. Nadathur, S. Hotchkiss, J. M. Diego, I. T. Iliev, S. Gottlöber, W. A. Watson, G. Yepes, In The Zeldovich Universe: Genesis and Growth of the Cosmic Web, Proceedings of the International Astronomical Union, IAU Symposium, Volume 308, pp. 542-545 (2016), ArXiv: 1412.8372, DOI